- Captain's Logs
- Feb 23, '22
- Sep 15, '17
- Sep 15, '15
- Jan 14, '15
- Dec 24, '14
- Jul 28, '14
- Jun 30, '14
- Nov 12, '13
- Jun 18, '13
- Dec 18, '12
- Jul 12, '12
- Apr 23, '12
- Nov 17, '11
- Jul 6, '11
- Nov 1, '10
- Sep 21, '09
- May 7, '09
- Apr 2, '09
- Mar 23, '09
- Dec 31, '08
- Nov 1, '08
- Jun 30, '08
- Mar 26, '08
- Dec 24, '07
- Oct 15, '07
- Mar 15, '07
- Dec 29, '06
- Sep 19, '06
- Jun 18, '06
- Mar 9, '06
- Dec 22, '05
- Jun 28, '05
- Jan 11, '05
- Dec 30, '04
- Nov 29, '04
- Oct 26, '04
- Sep 9, '04
- May 6, '04
- Feb 27, '04
- Dec 5, '03
- Nov 13, '03
- Nov 1, '02
- Mar 13, '02
- May 31, '01
- Oct 9, '00
- Feb 11, '00
- Sep 1, '99

|
 |
Tilting Saturn's Rings
This graphic shows in a series of three images how Saturn's rings, after they became tilted relative to Saturn's equatorial plane, would have transformed into a corrugated ring.
Images taken after Saturn's August 2009 equinox from NASA's Cassini spacecraft revealed alternating light and dark bands extending from Saturn's D ring, completely across the C ring, and right up to the inner B ring edge (see PIA11664). These brightness variations are almost certainly caused by the changing slopes in the rippled ring plane, much like the corrugations of a tin roof.
This series of images shows how such a vertical corrugation can be produced from an initially inclined ring by the natural tendency for inclined orbits to wobble systematically and slowly at different rates, depending on their distance from Saturn. The top image shows a simple inclined ring (the central planet is omitted for clarity), while the lower two images show the same ring at two later times, where the ring particles' wobbling orbits have sheared this inclined sheet into an increasingly tightly-wound spiral corrugation.
An animated version of this graphic is also included here.
Cassini images show the corrugation extends for 19,000 kilometers (12,000 miles). Based on detailed studies of this structure, scientists conclude that a broad swath of the rings became suddenly tilted in the early 1980's, likely because cometary debris crashed into the rings. The corrugation's radial extent implies that the impacting material was a dispersed cloud of debris instead of a single object. The corrugation's amplitude of 2 to 20 meters (7 to 60 feet) indicates that the debris' total mass was around 1 trillion kilograms (or one billion metric tons).
The Cassini Solstice Mission is a joint United States and European endeavor. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington, D.C. The Cassini orbiter was designed, developed and assembled at JPL. The imaging team consists of scientists from the US, England, France, and Germany. The imaging operations center and team lead (Dr. C. Porco) are based at the Space Science Institute in Boulder, Colo.
For more information about the Cassini Solstice Mission visit http://ciclops.org, http://www.nasa.gov/cassini and http://saturn.jpl.nasa.gov.
Credit: NASA/JPL/Space Science Institute Released: March 31, 2011 (PIA 12820)
Image/Caption Information |
|
 PIA 12820
Avg Rating: 8.84/10
Animation Full Size 828x470:
GIF 2.3 MB
Flash 586 KB
MP4 movie 6.8 MB
 PIA 12820
Avg Rating: 9.38/10
Graphic Full Size 1578x2000:
JPEG 245 KB
PNG 549 KB
TIFF 580 KB
Graphic Half Size 789x1000:
JPEG 95 KB
PNG 260 KB
TIFF 1.1 MB
|
Alliance Member Comments
i enjoy the science at this site as much as the imagery. this is great science.
|