- Captain's Logs
- Feb 23, '22
- Sep 15, '17
- Sep 15, '15
- Jan 14, '15
- Dec 24, '14
- Jul 28, '14
- Jun 30, '14
- Nov 12, '13
- Jun 18, '13
- Dec 18, '12
- Jul 12, '12
- Apr 23, '12
- Nov 17, '11
- Jul 6, '11
- Nov 1, '10
- Sep 21, '09
- May 7, '09
- Apr 2, '09
- Mar 23, '09
- Dec 31, '08
- Nov 1, '08
- Jun 30, '08
- Mar 26, '08
- Dec 24, '07
- Oct 15, '07
- Mar 15, '07
- Dec 29, '06
- Sep 19, '06
- Jun 18, '06
- Mar 9, '06
- Dec 22, '05
- Jun 28, '05
- Jan 11, '05
- Dec 30, '04
- Nov 29, '04
- Oct 26, '04
- Sep 9, '04
- May 6, '04
- Feb 27, '04
- Dec 5, '03
- Nov 13, '03
- Nov 1, '02
- Mar 13, '02
- May 31, '01
- Oct 9, '00
- Feb 11, '00
- Sep 1, '99

|
 |
Visible Jovian Aurora
 PIA 00605
Image 614 x 900:
JPEG 128 KB
PNG 463 KB
|
|
Jupiter's aurora on the night side of the planet is seen here at five different wavelengths. Jupiter's bright crescent, which is about half illuminated, is out of view to the right. North is at the top. The images are centered at 57 degrees north and 184 degrees West and were taken on April 2, 1997 at a range of 1.7 million kilometers (1.05 million miles) by the Solid State Imaging (SSI) camera system aboard NASA's Galileo spacecraft.
Although Jupiter's aurora had been imaged from Earth in the ultraviolet and infrared, these are the first images at visible wavelengths, where most of the emission takes place. CLR stands for clear (no filter) and shows the integrated brightness at all wavelengths. The other panels show the violet, green, red, and 889 nanometer-wavelength filtered images. The brightness of the aurora is roughly independent of wavelength, at least at the spectral resolution obtainable with these filters.
As on Earth, the aurora is caused by electrically charged particles striking the upper atmosphere, causing the molecules of the atmosphere to glow. The brightness in the different filters contains information about the energy of the impinging particles and the composition of the upper atmosphere. If atomic hydrogen were the only emitter, the light would be much stronger in the red filter, which is not consistent with the observed distribution.
The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.
This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at: http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at: http:/ /www.jpl.nasa.gov/galileo/sepo.
Image Credit: NASA/JPL |
|