Elder, C.M., Helfenstein, P., Thomas, P., Veverka, J., Burns, J.A., Denk, J.A., Porco, C. (2007). "Tethys' Mysterious Equatorial Band." American Astronomical Society, DPS meeting #39, #11.06.

We investigate a conspicuous equatorial albedo band on Tethys by analyzing Cassini Imaging Science Subsystem (ISS) Narrow Angle Camera (NAC) images obtained in several wavelengths. The band, first seen in Voyager data by Stooke (1989;2002) is symmetric 15' on either side of the equator and extends from 0' to 160'W; that is, almost centered on the leading part of Tethys. There is no evidence that the band is topographically-based; margins are gradational and there is no visible difference in underlying geology. Because of the otherwise broadly-uniform albedo of Tethys, subtle albedo and color variations are easily detected and we sampled them after correcting each image for wavelength-dependent limb darkening effects using Hapke's (2002) photometric model. In the ISS CL1-CL2 filter (611nm), the average albedo contrast of the band with adjacent cratered plains is only about 3%. Compared to its surroundings, the band is about 2-3% brighter in the NAC CL1-UV3 filter (338nm), 2-3% darker in the NAC CL1-GRN (568nm) and 8% darker in the NAC CL1-IR3 filter (930nm). This may indicate that the band exposes regolith composed of cleaner ice with a different grain-size distribution than surrounding materials. The average global photometric properties of Tethys are affected by the E-Ring (Verbiscer et al. 2007). However, dynamical explanations for the narrow albedo band that involve E-ring particles so far are unlikely given the broad nature of the E-ring and the inclination of Tethys.