CICLOPS: Cassini Imaging Central Laboratory for OPerationS

Titanic Deluge
[For trouble viewing the images/movies on this page, go here]
This series of images from NASA's Cassini spacecraft shows changes on the surface of Saturn's moon Titan, as the transition to northern spring brings methane rains to the moon's equatorial latitudes. Some of the most significant changes appear within a period of only a couple of weeks.

The brightest objects seen in these images are methane clouds in the troposphere, the lowest part of the atmosphere, which are most visible on the left of panel B, the lower half of panel C, and the right of panel D. Surface features appear in shades of gray. These images show changes (outlined area) along the southern boundary of a dune field near the equator named Belet. Dark Belet occupies most of the top of these images. (Belet looks dark because it is made from different materials than neighboring areas.)

Titan's equatorial latitudes are mostly arid. However, scientists interpret the changes seen in these images to be evidence of methane rain wetting the surface. Scientists have monitored the brightness of Titan's surface, including this area, for years and have ruled out other possible causes of the changes. In these images, some of the dark areas grow larger and then recede within weeks. The maximum extent of the changes is shown with a blue outline.

Years ago, images from the European Space Agency's Huygens probe and the Cassini radar instrument revealed dry channels near the equator (see PIA07236 and PIA08428). The new observations suggest the climate here is similar to that in the southwestern United States, where infrequent rain carves washes and riverbeds.

Titan's weather has been changing with the seasons, and storms now are more common at low latitudes, such as those observed here. An arrow-shaped storm cloud several hundred kilometers (miles) across was observed on Sept. 27, 2010. See PIA12817 for an image of that storm. See PIA11667 to learn how the sun's illumination of the Saturnian system changed during the transition to spring in the northern hemispheres and to fall in the southern hemispheres of the planet and its moons. See PIA12813 to learn more about Titan's changing weather.

The first image in this montage, panel A on the left, was taken early in the Cassini mission on Oct. 22, 2007, and shows how this region had appeared before the storms. The second image, panel B, was taken on Sept. 27, 2010. The huge arrow-shaped cloud is just out-of-frame to the left in panel B. The arrow-shaped cloud was quickly followed by extensive changes on the surface that can be seen in panel C, an image captured on Oct. 14, 2010. These changes cover an area of 500,000 square kilometers (193,000 square miles), roughly the combined area of Arizona and Utah in the United States.

The wet terrain can still be seen about a month after the storm in panel D, which was taken on Oct. 29, 2010. But by Jan. 15, 2011, which was the date of panel E, the area mostly appears dry and bright, with a much smaller area still dark, i.e. wet.

To see how dark areas in images can provide evidence of rainfall, whether in a recent image of Titan from Cassini or an older image of Earth taken from the Gemini spacecraft, see this 1965 view of Texas.

These images were re-projected, and the view in each is centered on terrain at 19 degrees south latitude, 251 degrees west longitude. Images in panels A, B, D, and E were taken with the Cassini spacecraft narrow-angle camera using a spectral filter sensitive to wavelengths of near-infrared light centered at 938 nanometers. The image in panel C was taken with the Cassini wide-angle camera using the same filter. The views were obtained at a range of distances from approximately 211,000 kilometers (131,000 miles) to 1.85 million kilometers (1.15 million miles) from Titan. Scale is about 7 kilometers (4 miles) per pixel in these re-projected images.

The Cassini Solstice Mission is a joint United States and European endeavor. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington, D.C. The Cassini orbiter was designed, developed and assembled at JPL. The imaging team consists of scientists from the US, England, France, and Germany. The imaging operations center and team lead (Dr. C. Porco) are based at the Space Science Institute in Boulder, Colo.

For more information about the Cassini Solstice Mission visit http://ciclops.org, http://www.nasa.gov/cassini and http://saturn.jpl.nasa.gov.

Credit: NASA/JPL/Space Science Institute
Released: March 17, 2011 (PIA 12818)
Image/Caption Information
  Titanic Deluge
PIA 12818

Avg Rating: 9.68/10

Labeled Full Size 2035x396:
JPEG 247 KB
PNG 573 KB
TIFF 2.0 MB

 

Titanic Deluge
PIA 12818

Avg Rating: 10/10

Unlabeled Full Size 2035x396:
JPEG 206 KB
PNG 560 KB
TIFF 2.1 MB



Want to add a comment?   Login (for Alliance Members) ... or ... Join the CICLOPS Alliance!