CICLOPS: Cassini Imaging Central Laboratory for OPerationS

Jupiter's long-lived White Ovals in True Color (Time Set 2)
[For trouble viewing the images/movies on this page, go here]
Jupiter's long-lived White Ovals in True Color (Time Set 2)
PIA 00859

Image 1700 x 800:
PNG 818 KB


Oval cloud systems of this type are often associated with chaotic cyclonic systems such as the balloon shaped vortex seen here between the well formed ovals. This system is centered near 30 degrees south planetocentric latitude and 100 degrees west longitude and rotates in a clockwise sense about its center. The oval shaped vortices in the upper half of the mosaic are two of the three long-lived white ovals that formed to the south of the Red Spot in the 1930's and, like the Red Spot, rotate in a counterclockwise sense. The east to west dimension of the leftmost White Oval is 9000 kilometers (km). (The diameter of the Earth is 12,756 km.) The white ovals drift in longitude relative to one another, and are presently restricting the cyclonic structure.

To the south, the smaller oval and its accompanying cyclonic system are moving eastward at about 0.4 degrees per day relative to the larger ovals. The interaction between these two cyclonic storm systems is producing high, thick cumulus-like clouds in the southern part of the more northerly trapped system.

This mosaic combines the violet (410 nanometers) and near infrared continuum (756 nanometers) filter images to create a mosaic similar to how Jupiter would appear to human eyes. Differences in coloration are due to the composition and abundances of trace chemicals in Jupiter's atmosphere.

North is at the top of this mosaic. The smallest resolved features are tens of kilometers in size. These images were taken on February 19, 1997, at a range of 1.1 million kilometers by the Solid State Imaging (CCD) system aboard NASA's Galileo spacecraft.

The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL Background information and educational context for the images can be found at URL
Image Credit: NASA/JPL

Want to add a comment?   Login (for Alliance Members) ... or ... Join the CICLOPS Alliance!